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INTRODUCTION

In this paper we discuss a problem of nonlinear Tchebycheff approxima­
tion in which the approximating functions are required to satisfy nonlinear
side conditions. In our study we remove a hypothesis employed by
Hoffmann [5]. (In this connection note our Lemma 2.) Thus, in one appli­
cation we are able to apply our results to osculatory interpolation using
such families as exponentials [6]. Indeed, the analysis of Perrie [1] shows
that our results also apply to ordinary rational functions.

BASIC RESULTS

Let Q be an open set in real n-space, Rn, where for each A = (al , ... , an)
in Rn we define

II A II == m;1x I ai I·
l~l~n

To each A E Q we assign a continuous real-valued function F(A, x),
x E [0, 1], such that the partial derivatives

of(A, x)/oai , i = 1,... , n

exist and are continuous in A and x. We let

W(A) == \ f Ci of(A, x) : Ci real(
( ;~l oa; \
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and denote by d(A) the dimension of W(A) as a subspace of qQ, 1]; we
assume d(A) > 0. Finally, set

v = {F(A, x): A E Q}.

When appropriate we will let f(j)(x) and F(j)(A, x) denote, respectively, the
j-th derivative of f(x) and F(A, x) with respect to x.

Approximation will always be in the Tchebycheff norm:

Ilfll - sup [f(x)1
"'''[0,1]

for fE qQ, 1].

We consider the problem of approximating a function g E qQ, 1] in the
Tchebycheff norm by functions F(A, x) E V which satisfy certain side condi­
tions

N;(A) = 0, i = 1,... , k.

Let V' = {F(A, x) E V: N;(A) = 0, i = 1,... , k} and assume V' is non­
empty. A function F(A *, x) E V' is said to be a best approximation to g if
and only if

II g - F(A*)II = inf{11 g - F(A)II: F(A, x) E V'}.

The following assumptions are made on the family V and the side condi­
tions N l , ... , Nk •

(1) For each A E Q, W(A) is a Haar subspace of qo, 1] of dimension
d(A); that is, every nonzero element in W(A) has at most d(A) - 1 zeros,
where d(A) > k.

(2) For each A E Q and some basis for W(A), which we assume without
loss of generality is

{oF(A, x)/oal , ... , of(A, x)/oad(A)},

the matrix

(
ONlA) : ~ : 1, , k )

oaj ] - 1, , d(A)

has rank k. Such a basis will be called a canonical basis.

LEMMA 1. Let F(A*, x) E V. Then there exist q = d(A*) - k points°~ Xl < ... < X q ~ 1 such that for each E > °there is a :3 > 0, depending
on A*, Xi' and E,for which °~ Xl' < ... < X q ' ~ 1 and

max {Ix;' - Xi I, I ei+J I} ~ :3
l<l~q

l~j~k



NONLINEAR TCHEBYCHEFF APPROXIMATION WITH CONSTRAINTS 293

imply that a vector A I E Q can be found which satisfies

and

F(A', X/) = F(A*, X/) + ei,

II A' - A * II ~ E.

i = 1,... , q,

j = I, ... ,k,

Here, d = d(A*), A* = (a1*, ... , an *).

(Note that we assume that the first d components of the gradient vector for
F(A*, x) form a canonical basis for W(A*).)

Proof. Let 0 ~ Xl < ... < Xd ~ 1. From (1) and (2) we may assume
without loss of generality that

det (8F(A*, Xi) : ~ :: 1, , d) ~ 0,
8aj j-I, ,d

and

k (
8Ni(A*) . i = I, ... , k) = k

ran " '. 1 d .Uaj j = ,... ,

Hence, there exists q = d - k of the Xi , which we label as 0 ~ Xl < ... <
XI ~ 1, such that

(

8F(A*, Xi) : ~ :: 1, , q)
8aj j - 1, , d

det ... ~ O.
8Ni(A*) . i = 1, , k

8aj . j = I, , d

(3)

The result now follows by applying the Implicit Function Theorem to the
functions:

- F(a1 ,... , ad, a%+l ,... , an*, X;') - ei, i = 1,... , q,

== N(a1 ,... , ad' a%+l ,... , an*) - eq+j ,j = 1,... , k,

where A = (a1 ,... , ad , a:+1 ,... , an *). I
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and

Hereafter, for the function in qo, 1] denoted by g(x) and the function in
V denoted by F(A *, x) we agree that

a(x) = sgn( g(x) - F(A*, x».

X = {x E [0,1] : Ig(x) - F(A*, x)1 = II g - F(A*)II},

R(A*) = {C ERn: C = (el , ... , Cd' 0,... , o)}

j d 8N;(A*). lL Cs 8 = 0, I = 1,... , k ,
s~l as

N(A*) = js~ Cs8F(:a:' x) : C E R(A*+

Further, d = d(A *) and the first d components of the gradient vector form
a canonical base. To avoid trivialities we assume g 1= V'.

LEMMA 2. Assume that F(A *, x) E V'. Then for each C E R(A *) with
II C II = 1 there exists a sequence (A(v»~~l C Q - {A*} such that

II A Iv) - A * II -+ °
F(A(v), x) E V', v = 1,2,...

and
Alv) - A*

II Alv) - A* [I -+ c.

Proof Let C E R(A *) be as in the hypotheses and define

h( ) = ~ ". 8F(A*,x)
x - L... c, 8

i~l ai
X E [0, 1].

Clearly, h ¥= 0. By (1) there exist points °< Xl < ... < Xd < 1 such that
h(xi) ¥= °for 1 < i < d. Now, (3) holds for q = d(A*) - k of the Xi, say,
o< Xl < ... < xq < 1. Let

ei == h(Xi) ¥= 0, i = 1,... , q.

Let (t(v»~l be a sequence of positive numbers such that t 1v ) -+ 0. For some
subsequence of (tlv})~l , which we do not relabel, there exists by Lemma 1 a
sequence (Alv»~l C Q with the properties that

F(A(v), Xi) = F(A*, Xi) + t(vlei, i = 1, ... , q,

NlAlv» = 0, j = 1,... , k,

A(v) = (a~v>, ... , a);\ a:+l , ... , an *),
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and

IIA(v) -A*II-O.

By the Mean Value Theorem,

F(A(v>, Xi) - F(A*, Xi) = f (a~v) - a/) (JF(~~), Xi)
s~l s

0= N;CA(v») - N;(A*)

= f (a(v) - a *) oN;(A~V»)
8=1 8 8 oas '

i = 1,... , q,

j = 1,... , k,

(4)

(5)

where the vectors At) and AjV) are on the line between A * and A(v). Since
A(v) =1= A * for each v, we may assume that

where C = (cl , ... , Cd, 0,... , 0) and II ell = 1. Dividing by II A(v) - A * II in
(4) and (5) and letting v - 00 implies that

and

d , of(A*, Xi) . t(v)

L1Cs oas = ei 'VElIIA(V) - A*II'
s=

i = 1,... , q, (6)

j = 1,... ,k. (7)

By (3), (7), and the structure of C it follows that for at least one index i the
left (and right) side of (6) is not zero. Hence

ex == lim [t(v)/II A(v) - A* Ill> o.
v.... 00

It follows that C = !XC. Since II ell = II C II = 1 we must have IX = 1 and
C =C. I

LEMMA 3. Assume that F(A *, x) is a best approximation to g(x) and that
k < d(A *). Then every h E N(A *) satisfies

min a(x) hex) ~ O.
"'EX
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Proof Suppose to the contrary that there exists some nonzero h* E N(A *)
for which

min a(x) h*(x) > O.
XEX

Clearly, we may assume that II C* II = 1, where C* E N(A*) and

h*( ) = ~ * of(A*, x)
x - L. Cs oa .

s=1 s

Let

E = min a(x) h*(x) > O.
XEX

By continuity and the fact that Q is open there exists a 0 > °such that

II C - C* II ::s; 0

imply that A E Q and

and II A - A*II ::s; 0

. () ~ of(A, x) /2mm a X L. Ci 0 ~ E •
XEX i=l a i

Without loss of generality we may assume that II g - F(A *)11 = 1. For
o> °as above, let

, d of(A x) I
Z = IX E [0,1] : (g(x) - F(A*, x» i~ Ci oa: ~ E/3\,

whenever II C - C* II ~ 0 and II A - A * II ~ O.
Clearly, X (') Z = 0. Hence, 8 = SUPXEZ Ig(x) - F(A *, x)1 < II g - F(A *)11.

Let

E = sup 11 t1 Ci OF~~: x) I:II C - C* II ~ 0, II A - A* II ~ 0, x E [0,1]1.

Now, let (A(v»:l be a sequence corresponding to C* as in Lemma 2. Choose
v so large that II A(v) - A* II ::s; 0, II C(v) - C* II ~ 0 and II A(v) - A* II <
min{(11 g - F(A *)11 - 8)/E, Ej3£2}.

Consider a fixed x E [0,1]. We have by the Mean Value Theorem that

F(A(v), x) - F(A*, x) = t (a).") _ a/) of(A;;X), x)
r=l r

(8)
= II A(v) - A* II' hv(x),
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where

C(v) = (Civ), ... , Cr), 0, ... , 0) = (A(v) - A*)/II A(v) - A* II,

h (x) = ~ C(v) of(A(v)(x), x)
v L, r oa

r~1 r

and A<vl(x) is on the line between A* and A(v).
Assume that x E Z. From (8) and the definitions we have

1g(x) - F(A(v), x)1 ~ Ig(x) - F(A*, x)1 + II A(v) - A* 11'1 hvCx)I
< 8 + (II g - F(A*)II - 8).

Hence, Ig(x) - F(A *, x)1 < II g - F(A *)11 for x E Z.
Now, suppose that x 1= Z. Then by (8) it follows that

Ig(x) - F(A(v), x)1 2 = Ig(x) - F(A *, x) - II A(v) - A * II . hv(x)J2

= Ig(x) - F(A*, x)1 2 - 211 A(v) - A* II' (g(x)

- F(A *, x)) . hv(x) + II A(v) - A * 11 2 • IhvCx)1 2

~ II g - F(A*)112 - 211 A(v) - A* II' (€/3)

+ II A(v) - A* II' (€/3).

Hence, Ig(x) - F(A(v), x)1 < II g - F(A*)II for x 1= z. By continuity and
compactness it follows that II g - F(A(v»)11 < II g - F(A*)II. I

THEOREM 4. Same hypothesis as Lemma 3. Then the origin ofreal q-space,
where q = d(A *) - k = dim N(A *), lies in the convex hull of the set
{a(x)x: X E X} where x = (h1(x), ... , hq{x)) and {h1 , ... , hq} is a basis for N(A *).

Proof This is merely a restatement of Lemma 3. A proof is given by
Cheney, [2].

ApPLICATIONS

We now give some applications of these results.
Let °~ Y1 < ... < Yp ~ I be p distinct points and ml , ... , mp be positive

integers with m - max mi . Assume that V satisfies the following condition:

(9) For each A E Q w(A) is an extended Haar subspace of Cm-l[O, 1]
of order m; that is, each nonzero element of w(A) has at most d(A) - I
zeros counting multiplicities up to order m.
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We now consiqer the problem of approximating a given function
g E em-I[O, 1] by functions F(A, x) in V which satisfy the side conditions

= o.

i = I, ,p
j = O, ,mi - 1

(10)

It is easy to see that (1) and (2) hold in this case. Also, for each A ED, we
have

N(A) = lh E w(A) : h(i)( Yi) = 0
i = I, ,p I
j = O, ,mi - 1\'

THEOREM 5. If F(A*, x) is a best approximation to g and

1>

q = d(A *) - L mi ~ I
i=l

then there exist q + 1 points °~ Xl < ... < xq+l ~ 1 such that

and

Ig(xr) - F(A*, xr)1 = II g - F(A*)II

r = 1,... , q,

r = 1,... , q + 1,

where k(r) denotes the sum of the multiplicities mJor which Xr < Yi < x r+1 •

Proof The conclusion follows from Theorem 4 and Theorem 3.1 of the
results of Loeb et al. [3]. I

Now suppose that V has the following properties.

(11) For each A ED, w(A) is an extended Haar subspace of Cm[O, 1]
of order m + 1.

(12) If A, A' ED, then F(A, x) - F(A', x) can have at most d(A) - 1
zeros counting multiplicities up to order m + 1, or else F(A, x) ~ F(A', x).

THEOREM 6. F(A *, x) is a best approximation to g ifand only if there exist
q + 1 points 0 ~ Xl < ... < Xq+l ~ 1, where q = d(A*) - L~=l mi, such
that

and

Ig(xr) - F(A*, xr)1 = II g - F(A*)II,

r = 1,... , q,

r = 1,... , q + 1.

In addition, there is at most one best approximation.
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Proof Clearly, we may assume that q < 0, since otherwise, by (12),
there could be at most one function F(A, x) E V which satisfies (10). The
"uniqueness" and the sufficiency of alternation are easy consequences of
(12). Theorem 5 implies the necessity of alternation. I

We now consider another application. Suppose

(13) If F(A, x) and F(A *, x) are in V' and are not identical then they
can agree on at most q - 1 points where q - d(A *) - k points.

(14) For A * E Q and any q distinct points, 0 ~ Xl < X2 < ... < Xq~ 1,
(3) is satisfied.

THEOREM 7. F(A*, x) is the best approximation to g E qo, I] if and
only if there exist q + 1 points, 0 ~ Xl < X2 < ... < Xq+l ~ 1, where
q = d(A *) - k such that

Ig(xI ) - F(A*, Xl) I = II g - F(A*)II,

g(Xi) - F(A *, Xi) = -(g(Xi+l) - F(A *, Xi+l)),

Furthermore, there is at most one best approximation.

i = I,... , q.

Proof We outline the proof. The necessity of the alternations follows
from the fact that N(A *) is a Haar Subspace of dimension d(A *) - k,
Theorem 4, and standard results concerning the convex hull. (For example,
see [2, p. 64]). The sufficiency of the alternations follows from (13). "Unique­
ness" is a consequence of (13), (14), and "Implicit Function Theorem". I

We note that the hypotheses of Theorems 6 and 7 could be merged to give
other variants.

For our last application we examine the behavior of the best approxima­
tion operator.

Again, let V satisfy (11) and (12). The proofs of the next three results
require only slight modification of the proofs given by Barrar and Loeb [4]
for the corresponding results without interpolation.

We assume that F(A*, x) is the best approximation to g E em-I[O, I]
which satisfies (10), and that

d(A *) = max d(A).
AE.Q

Also, we let T(f) denote the best approximation to IE em-I[O, 1] from V
which satisfies (10), if the best approximation exists. Let V(g) be the set of
elements of V which satisfy (10).
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THEOREM 7. There exists a number ex > 0 such that if F(A, x) E V(g)
then

II g - F(A)II ? II g - F(A *)11 + ex II F(A) - F(A *)11. I

THEOREM 8. There is a number'\ > 0 such that iffE Cm-1[0, 1],

i = 1, ,p,
j = O, ,mi - 1,

(15)

and T(f) exists, then

II T(g) - T(f)11 <; ,\ II g - fll·

THEOREM 9. There is as> 0 such that for any fE Cm-1[0, 1] which satis­
fies (15) and has the property

Ilf - g II <; S,

T(f) exists.
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